If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3m^2+26m-9=0
a = 3; b = 26; c = -9;
Δ = b2-4ac
Δ = 262-4·3·(-9)
Δ = 784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{784}=28$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(26)-28}{2*3}=\frac{-54}{6} =-9 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(26)+28}{2*3}=\frac{2}{6} =1/3 $
| -11+51=-5(x+5) | | 5x-8=-118 | | 7m+12=4m+15 | | 14+4=-3(5x-6) | | (360/x-180)x=1800 | | x+2x+2x+8=38 | | 5(x-14)=3(x+6) | | 4x^2-32x=17x-12 | | 5x(-3+5)=2 | | 22^2=1/2*x+7*x | | 22=x+7*x/2 | | 4x-2(1/2×-1)=14 | | (x-5)^2=3x(x-+3) | | 6=3t^+2t | | (x)(10)-25=12.5 | | x.10-25=12.5 | | 1/3(x+3)+1/6(x-6)=x+4 | | X/3=4+(x-30/5) | | y=1/32(2)^2 | | P=x+(2x-2)+(3x-6) | | 50^(3x)=5 | | X=(2x-2)+(3x-6) | | 24=-5u+2(u+3) | | 3x-16+2×=104 | | 7e+2=3e | | 7e+2=3 | | 8n=-0.5 | | 2y-68=68 | | 5x(x+5)=900 | | 9/2x=36 | | X-288=y | | 2(2x-5)=-2+2x |